
INSTITUTE OF PHYSICS PUBLISHING SMART MATERIALS AND STRUCTURES

Smart Mater. Struct. 14 (2005) S154–S161 doi:10.1088/0964-1726/14/3/018

Unsupervised statistical damage diagnosis
for structural health monitoring of
existing civil structures
A Iwasaki1, A Todoroki2, T Sugiya3, S Izumi1 and S Sakai1

1 University of Tokyo, Department of Mechanical Engineering, 7-3-1 Hongo, Bunkyo-ku,
Tokyo 113-8656, Japan
2 Tokyo Institute of Technology, Department of Mechanical Sciences and Engineering,
2-12-1, O-okayama, Meguro, Tokyo 152-8552, Japan
3 DMW Corporation, 3-27, Miyoshi-cho, Mishima-shi, Shizuoka 411-8560, Japan

Received 2 April 2004, in final form 2 March 2005
Published 26 May 2005
Online at stacks.iop.org/SMS/14/S154

Abstract
Structural health monitoring is an important technology for ageing aerospace
and civil structures. For this structural health monitoring, fiber optic sensors
are increasing in popularity; however, several kinds of sensors are usually
required, including sensors other than fiber optic sensors. Thus, a new
technology for transforming conventional sensors into distributed sensors is
required. The present study proposes Ethernet LAN technologies for the
sensor integration required for structural health monitoring, and discusses
the advantages of adopting this technology. Moreover, the paper describes
an Ethernet-based health monitoring system and a statistical unsupervised
damage detecting method for automatic damage diagnosis. Then, we create
a system for monitoring the damage to an expressway tunnel jet-fan using
system identification and statistical tools. Damage was detected from
changes in a set of data measuring loads on the turnbuckles of the jet-fan.
The resulting automatic diagnosis of damage to the jet-fan was successful.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Structural health monitoring (SHM) systems are equipped with
numerous sensors and are used to evaluate the state of an entire
structure or its structural components in real time. Recently,
in order to prevent serious failures of critical civil structures
such as bridges and gas pipes, structural health monitoring
systems have been put into place. In Japan, minimizing seismic
disaster is especially important. Therefore, the development of
a system that diagnoses the condition of existing civil structures
at low cost is an urgent matter.

The sensors used in SHM systems are generally optical
fiber strain sensors. However, multiple kinds of sensors,
including speed counters, leakage sensors, gas sensors,
intensity-based non-distributed fiber optic sensors and CCD
cameras, are required for practical SHM systems. In some
cases, actuators may be necessary for closing safety valves or
activating vibration exciters. If these sensors and actuators
were mounted on the system structures using wires, it would
require many bundles of analog lead wires, and become too

cumbersome to handle efficiently. The bundles of lead wire
would also cause significant increase of weight. In some
cases, the bundles would make it impractical to replace some
structural components when the structure requires repairs or
arrangements.

The Internet is generally adopted to transfer digital data
packets through computer networks such as e-mail, multimedia
information or Web data. The transfer of analog data from
sensors via the Internet has already been attempted (Tate and
Williams 1993, Ballard and Chen 1996). Conventional cases
employ PCs for data acquisition and transfer. The present
paper proposes new tools for SHM via the Internet. The main
such tool is a diminutive ‘smart’ terminal that has a network
socket, a CPU, memory, a large capacity silicon disk tip, A/D
and D/A converters, and digital I/O ports. It adopts the Linux
operating system, and it has a Web-server, mail-server and
diagnostic methods for structural damage monitoring.

As a sample application, the present study attempted
structural health monitoring of a jet-fan installed on an
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Table 1. Hardware specifications for the smart terminal.

OS RedHat 7.3
CPU Intel Pentium MMX 266 MHz
Memory On board 32 MB memory (MAX160 MB)
Storage IDE (Max60 GB HDD)
LAN Intel 82559 10/100 BaseTX ×2
Interface USB1.1 ×2, PCMCIA Slot ×1, Serial Port ×1

Analog input (0–5 V, 16 bit) CH With amp (gain: 1–999) ×8
Without amp ×2

Sampling frequency Up to 2 kHz
Resolution 12 bit
Memory for data Storage to main memory

Analog output (0–5 V, 16 bit) 2 ports
Digital output 2 ports
Size 121.3 mm × 175.3 mm × 46.0 mm

expressway tunnel as a ventilator fan. Damage to the jet-fan
was detected from changes in the set of measured load data on
the turnbuckles of the jet-fan. Damage was diagnosed using
statistical similarity tests of the response surfaces at different
points in time (Myers and Montgomery 2001), showing the
relationships between the output of sensors. This diagnostic
method requires only data sets for the non-damaged state, and
does not require complicated modeling or numerous data sets
after the generation of damage, thereby considerably lowering
its cost. The resulting automatic diagnosis of damage to the
jet-fan was successful.

2. Health monitoring system via the Internet

2.1. Smart terminal for structural health monitoring system

For conventional applications adopting Ethernet for data
transfer, PCs, A/D converters and Ethernet cards have been
required. This requirement has made the structural monitoring
via Ethernet cumbersome. As a solution for this problem, the
present paper proposes a new tool, called a ‘smart terminal’,
for structural health monitoring via the Internet.

The smart terminal is a small Linux computer which has as
its hardware a network socket, a CPU, memory, a large capacity
silicon disk tip, A/D and D/A converters, and digital I/O ports.
For software, it has a Web-server, mail-server and diagnostic
methods for structural damage monitoring. In our structural
monitoring system, sensors are connected to the terminal and
the terminal is connected to the Internet. The monitoring of
the structure is automatically performed by the built-in CPU,
and a remote user confirms the results using a Web browser.

The smart terminal, which we are developing now, is a
lunch-box size small computer that has several A/D and D/A
converter channels. Figure 1 shows the appearance and schema
of the smart terminal. Detailed hardware specifications are
shown in table 1. Since this new smart terminal has a D/A
converter, users can react to the structures on the basis of
sensor information. For example, when a gas pipeline fracture
is detected, the pipeline valves can be closed remotely. Using
smart terminals, users are also able to build distributed sensor
systems using conventional sensors.

2.2. Health monitoring system using a smart terminal

Using the smart terminal described above, it is possible to
construct a structural health monitoring system via the Internet.

(a) Appearance 
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Figure 1. Smart terminal.

The monitoring system proposed in the present study is shown
in figure 2. The example shown here is a structural health
monitoring system for a jet-fan installed in an expressway
tunnel as a ventilator fan.

Multiple kinds of conventional sensors such as optical
sensors, thermometers, vibration sensors and speed counters
are required for the structural health monitoring. If these
sensors are mounted using conventional analog lead wires, the
system expands into bundles and bundles of analog lead wires,
the weight and volume of which lead to numerous difficulties.
Using a smart terminal, these troubles are avoided. Analog
lead wires are required only for the connection of sensors and
the smart terminal, and data is transferred by Ethernet, either
wired or wireless. Since the smart terminal has a CPU, quasi-
real-time measurements can be performed by installing a data
transfer control program to avoid data collision. The smart
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Figure 2. Schema of the system for health monitoring via the Internet.

terminal includes a Web server; thus, a remote user can confirm
the diagnoses that the smart terminal sends via Web services.

Using the smart terminal and Ethernet for structural health
monitoring has the following advantages:

(1) Since the Ethernet is a digital technology, it is resistant to
noise.

(2) With Linux as the operating system, the network has high
security.

(3) Replacement of sensors and actuators is very easy.
(4) Multiple kinds of conventional sensors and actuators can

be used for remote monitoring and actuating.
(5) Any troubles with the sensors or actuators do not affect

the network system.
(6) Network topology can be changed simply by changing

plugs.
(7) Using dynamic routing and multiple network cables,

network troubles can be automatically avoided.

3. Damage diagnostic method

This section addresses a statistical unsupervised damage
diagnostic method for the structural health monitoring of
existing structures at minimal cost. Numerous damage
diagnostic methods for structures have been proposed; most
employ either a parametric method based on structure
modeling, or a non-parametric method such as an artificial
neural network (ANN). Proposed parametric methods include
a substructural flexibility method (Felippa et al 1998) and
a residual force method (Kameyama et al 1999), while
proposed non-parametric methods include ANNs (Chang et al
2000, Kawiecki and Xu 1999, Zapico et al 2001) and
response surface methods (RSMs) (Todoroki and Tanaka
2002). Parametric methods require modeling of each structure,
and non-parametric methods require numerous data sets for

training. Both structural modeling and data sets for training
are very costly. In the health monitoring of existing structures,
obtaining post-damage data sets for programming the ANN or
RSM is almost impossible. This raises the demand for a low-
cost diagnostic method that does not require the training data.
Therefore, generally damage is diagnosed by judgment from
the threshold values of arbitrary parameters. When judging
the damage from the threshold value, the threshold value is
experimentally determined from the relation for the probability
distributions of the parameter for the structure for the normal
condition and the non-normal condition. Therefore, high-
level experimental skill or data is required for determining
the threshold value for high diagnostic accuracy. And
application to a structure with a usually fluctuating parameter
(like in rotation apparatus) is difficult. Moreover, in a
real environment, the average of the measurements changes
dynamically with temperature drifts etc, and the average of
the distribution at the structure for normal conditions also
changes. Therefore, deciding on the threshold value with high
accuracy for a structure in a real environment is difficult and
the diagnosis could be very unstable. In order to perform stable
diagnosis using the threshold value, it is necessary to search for
a parameter which can clearly provide a distinction between the
structure for the normal condition and that for the non-normal
condition from experiment or analysis. Since an experiment
or analysis is required for the method, it is difficult to construct
a structural health monitoring system for the existing structure
which requires a breakdown experiment or model construction
for the analysis. Therefore methods for damage diagnosis by
detecting changes of the time relations (Shon and Farrar 2001)
or the spatial relations (Iwasaki et al 2001, 2002a, 2002b)
of sensor outputs are proposed. The latter study proposes a
low-cost statistical diagnostic method for structural damage
detection. The statistical diagnostic method proposed in the
present paper is a low-cost, simple system. The diagnostic
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Figure 3. Flow of training process.

method employs system identification using a response surface
(RS), and the damage is automatically diagnosed by testing
changes in the identified system by means of a statistical F .

The system does not require programming for the relation
between the measured sensor data and damage, nor does it
require an FEM model of the entire structure. This method
simply diagnoses slight changes in the relation between the
measured sensor data.

3.1. Damage diagnostic using SI—F method

The basic procedure of the present diagnostic method for
damage detection is shown in figures 3 and 4. First, we
perform system identification of a structure in its intact state
using a response surface (shown in section 3.2) and create a
response surface from the measured sensor data obtained from
this initial state (figure 3). The response surface is called the
‘initial response surface’. For example, data from one sensor
are selected as a response while data obtained from adjacent
sensors are selected as predictors. Of course, we can select
natural frequencies obtained from vibration data instead of
using the measured data directly for the damage detection for
the entire structure. After the training process, the damage
monitoring process is started. During the monitoring process
(figure 4), a set of every sensor’s data is periodically obtained
by cycling measurements several times. From the measured
set of data, we perform system identification of the structure
and a response surface is re-created. Such a response surface

Figure 4. Flow of monitoring process.

is called a ‘re-created response surface’. The two response
surfaces are compared using a statistical similarity test with an
F test (shown in section 3.3). When the re-created response
surface is discriminated from the initial response surface, that
means that the relation between the sensor data has changed,
and it can be concluded that something has happened to the
structure. Of course, this does not always means damage.
Nevertheless, this method can provide a low-cost solution
for diagnosing abnormality of a structure to determine the
necessity for a more precise investigation.

3.2. System identification using response surface
methodology

Response surface methodology (Myers and Montgomery
2001) is used for system identification in this method and
is often employed for the process of optimization in the
field of quality engineering. It consists of a series of
experiments designed to select the most suitable points for
fitting surfaces effectively using the least-squares method
to regress response surfaces. The response surface is the
approximation function that expresses the relationship between
a response and predictors. Generally, a response surface is
represented with the following formula:

y = f (x1, x2, . . . , xl) + ε, (1)

where x variables are predictors, y is the response, ε is the
regression error and l is the number of predictors. In general,
polynomials are used.

For simplification, let us consider the case in which a
response is approximated by quadratic polynomials of two
predictors as follows:

y = β0 +
l∑

j=1

β j x j +
l∑

j=1

β j j x
2
j +

l−1∑

i=1

l∑

j=i+1

βi j xi x j , (2)

where β is the regression coefficient.
If squares or interactions of the predictors x2

j and xi x j are
replaced by new predictors x j ( j > l), the formula (2) becomes
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(a) Front view                                                 (b)Side view 

Figure 5. Jet-fan for the experiment.

the linear regression model as follows:

y = β0 +
k∑

j=1

β j x j , (3)

where k is number of the predictors after the replacement.
In terms of n observations, the equation (3) can be written

in matrix form as follows:

Y = Xβ + ε (4)

X =




1 x11 x12 · · · x1k

1 x21 x22 · · · x2k
...

...
...

. . .
...

1 xn1 xn2 · · · xnk




Y =






y1

y2
...

yn





, β =






β0

β1
...

βk





, ε =






ε1

ε2
...

εn





.

An unbiased estimator of β (b) is obtained using the least-
squares method as follows:

b = (XTX)−1XTY. (5)

Lack of fit is evaluated with the adjusted coefficient of
multiple determination R2

adj. R2
adj is defined as

R2
adj = 1 − SSE/(n − k − 1)

Syy/(k − 1)
(6)

where SSE is the square sum of errors, Syy is the total sum
of squares. Since the response surface was regressed by the
least-squares method, the sum of square error (SSE) is defined
as follows:

SSE = YTY − bTXTY. (7)

The value of R2
adj is equal to or lower than 1.0. Higher values

of R2
adj imply a good fit. When the response surface shows a

very good fit, R2
adj approaches 1.0.

3.3. Similarity testing of response surfaces using an F test

Let us assume that we have two response surfaces that are
created from two different sets of experiments:

Y1 = X1β1 + ε1

Y2 = X2β2 + ε2,
(8)

where the number of experiments for regression are n1 and
n2, respectively. In order to investigate the similarity of the
two response surfaces, a null hypothesis is introduced. The
hypothetical definition is shown as follows:

H0: β1 = β2, (9)

assuming that each error term (ε) is independent and has the
same distribution in two sets of experiments. In this case, the
F statistic value F0 is defined as follows:

F0 = SSE0 − SSE12

SSE12

n − 2p

p

n = n1 + n2 SSE12 = SSE1 + SSE2,

(10)

where p = k + 1 and subscripts 1 and 2 show the SSEs of
response surfaces 1 and 2, and 0 shows the SSE of the response
surface which is regressed from the data for 1 and 2. This F
statistic value F0 follows an F distribution of degree of freedom
(p, n − 2p) under the null hypothesis. When the two response
surfaces are similar, F0 becomes small. The critical limit for
rejecting hypothesis H0 is defined as follows:

F0 > Fα
p,n−2p, (11)

where α is the significance level. The similarity of response
surfaces is rejected when F0 is larger than Fα

p,n−2p.

4. Damage detection of jet-fan

4.1. Experimental set-up

The new diagnostic method was applied to the structural health
monitoring of a jet-fan installed in an expressway tunnel as
a ventilator fan, and the effectiveness of the method was
investigated experimentally. The diameter of the jet-fan was
800 mm and the length, 3000 mm. The loading condition of
the turnbuckles was employed as the parameter for diagnosis in
the present study. A sample configuration is shown in figure 5.

The experimental set-up of the jet-fan is shown in figure 6.
Usually, such a jet-fan is hung on the ceiling of a tunnel
by six turnbuckles, but four turnbuckles at the central part
support almost all the jet-fan’s load. For that reason, damage
detection of the jet-fan could be based on changes in the
loading condition of the turnbuckles of the four central parts
(turnbuckles 1–4). The jet-fan used in the experiments and the
load cell for measuring the loading condition of the turnbuckles
are shown in figures 7 and 8, respectively. As shown in figure 8,
washer-type load cells are mounted between the body of the
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Figure 6. Experimental set-up of the jet-fan.

Figure 7. Jet-fan for the experiment.

Figure 8. Load cell.

jet-fan and the heads of the fastening bolts of the turnbuckles.
Data was measured at 500 Hz. The rotation frequency of the
fan of the jet-fan was 50 Hz. An example of measured data
is shown in figure 9. Damage to the jet-fan was defined as
looseness of a turnbuckle.

When a turnbuckle rotates by about 720◦ , it stops holding
the load of the jet-fan. Even if one turnbuckle does not
hold load, the jet-fan operation is not affected, and fall of a
turnbuckle does not occur either. This 720◦ rotation is defined

Figure 9. Loading condition of the turnbuckles.

as 100% of the damage level. The jet-fan health monitoring
system aimed to detect this state.

4.2. Response surface for detection of damage of a jet-fan

In the present study, the loading condition of turnbuckle No 1
was the response, and the loading conditions of the other
turnbuckles were predictors. In this case, average of R2

adj of
response surface using linear, quadratic and cubic polynomials
are as follows:

Linear equation: 78.3

Quadratic polynomial: 96.2

Cubic polynomial: 99.3.

Since the quadratic polynomial shows good regression
accuracy, the quadratic polynomials were employed for the
creation of the response surface. The response surfaces were
approximated as follows:

N1 = β0 +
4∑

i=2

βi Ni +
4∑

i=2

4∑

j=i

βi j Ni N j , (12)

where Ni represents the load data for turnbuckle No i . The
response surface of equation (12) is regressed from the data
set of 60 measurements.

5. Results and discussion

5.1. Probability distribution of F0 of a non-damaged jet-fan

The threshold value for the similarity testing of response
surfaces first had to be defined; therefore, similarity tests of the
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Figure 10. Probability distribution of F0 for the intact state.

response surface for the initial state and the response surface
for the same state were conducted. In order to obtain the
probability distribution of the F0 value for the intact state,
20 000 tests were conducted. The test value was calculated
from the following process. (1) Select 60 data sets from
8192 data sets at random. (2) Regress the response surface
from 60 data sets. (3) Calculate F0. (4) Repeat 1–3. As
shown in section 2.3, the probability distribution of the F0

value in a similarity test of the same response surfaces follows
F(p, n − 2p). In this case, the number of degrees of freedom
p is 6, total the number of response surfaces is 120 and
probability distribution of F0 in the intact specimen may
theoretically follow F(6, 100). Figure 10 shows the theoretical
value of an F(6, 100) distribution and the experimental value
of a probability distribution of F0 in the intact state. In the
experiment, both the initial response surface and the re-created
response surface are created from measured data taken from
the intact specimen.

As shown in figure 10, the experimental distribution and
theoretical distribution exhibited good agreement. Therefore,
the probability distribution of the F0 value of the intact
structure follows a distribution that depends on the model
shape of the response surfaces. And the critical value of the F
similarity test, which shows the threshold value between those
for the intact state and the damaged state, is derived from only
a number of data sets and freedom of response surfaces. This
result signifies that the threshold value of the damage is decided
only from the model of the response surface.

In this paper, the significance level α for the F similarity
test was set to 1%. When F0.01

6,100 = 2.50 and F0 exceeds this
value, similarity of the identified systems is rejected and the
structure is diagnosed as having been damaged.

5.2. Probability distribution of F0 for a damaged turnbuckle

After the threshold was defined, damage diagnosis of the jet-
fan was conducted to investigate the method’s effectiveness.
Tests of various conditions of turnbuckle looseness were
conducted. The looseness condition was quantized into four
levels with 20% intervals.

Figure 11 shows the plot of the probability distribution
for a looseness condition. Figure 11(a) shows the probability
distribution when the looseness is 60% and figure 11(b) shows

Figure 11. Probability distribution of F0 for the damaged condition.

Table 2. Average of F0 for each size region.

Looseness of turnbuckle 1 (%) Average of F0

Intact 0.982
40 1.51
60 2.83
80 4.79

100 6.88

Table 3. Diagnostic accuracy of detection of delamination.

Looseness of turnbuckle 1 (%) Reliability of estimation (%)

Intact 99.2
40 18.4
60 54.7
80 97.4

100 100.0

the distribution when the looseness is 100%. Each distribution
differs from the probability distribution of the intact structure
shown in figure 10. This result indicates that the F0 value is
an effective parameter for diagnosing the presence of damage.

Table 2 shows the average value of the F0 statistics for each
condition of looseness. F0 increases uniformly according to
the increase of the looseness.

Using the limit of 2.50 defined before, performance tests
of the diagnostic method were conducted to investigate the
effectiveness of the method. Table 3 shows the probability of
diagnosis. For the intact case (the looseness of the turnbuckle
is 0%), the similarity tests of the two response surfaces passed
with a performance level of 99%. When the looseness of the
turnbuckle was greater than 80%, the similarity of the two
response surfaces was rejected with a performance level of
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100%, which is a perfect diagnosis for the existence of damage.
On the basis of the performance results, we concluded that the
new diagnostic method provides high performance at low cost.
For this method, data on the damaged state is not required to
define the limit between the intact and damaged states.

6. Conclusions

The present paper describes the advantage of using the Internet
for a structural health monitoring system, and demonstrates
a statistical unsupervised damage diagnostic method using
system identification and statistical tools. In the present
paper we propose a new ‘smart terminal’ for a structural health
monitoring system using the Internet. The smart terminal com-
bines a CPU, A/D converter, memory, Ethernet and damage
diagnostic method in a small package. Furthermore, it enables
automatic structural health monitoring without the necessity
of taking post-damage state measurements. The diagnostic
method employs system identification using response surfaces:
the damage is automatically diagnosed by testing the similarity
of the RS to an initial RS by statistical methods. As an exam-
ple of the type of monitoring that becomes possible with this
method, we applied the technology to an expressway tunnel
jet-fan. As a result, this method successfully detected damage
to the jet-fan with a near-perfect performance.
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